Vježba 4: Prikaz računalne mreže s usmjernikom i preklopnicima

Luka Ćosić 3.F

PRIPREMA ZA VJEŽBU

1. Što je usmjernik?

Usmjernik (ili router) je uređaj koji se koristi u računalnim mrežama za proslijeđivanje podataka između računalnih mreža. Njegova glavna funkcija je odabir najboljeg puta na temelju odredišne adrese IP paketa, kako bi podaci stigli od izvora do odredišta u mreži.

2. Koji su zadaci usmjernika na mrežnom sloju?

Proslijeđivanje podataka: Usmjernik odabire najbolji put za slanje podataka između izvora i odredišta na temelju adresa IP paketa. Ova funkcija omogućuje podacima da putuju kroz različite mreže dok stižu do svog konačnog odredišta.

Tablica usmjerenja: Usmjernik održava tablicu usmjerenja koja sadrži informacije o tome koje mreže su mu izravno dostupne i kako doći do drugih mreža. Ova tablica se redovito ažurira razmjenom informacija s drugim usmjernicima.

NAT (Network Address Translation): Usmjernik može izvoditi NAT, što znači da može mijenjati izvore ili odredišne IP adrese paketa koji prolaze kroz njega. Ovo je korisno za štednju javnih IP adresa.

Firewall i sigurnost: Moderni usmjernici često uključuju firewall funkcije koje prate promet koji prolazi kroz njih i mogu blokirati neželjene pakete, štiteći mrežu od sigurnosnih prijetnji.

Quality of Service (QoS): Usmjernici mogu pridonijeti upravljanju QoS-om, što znači da mogu prioritetizirati određeni tip prometa (npr., glasovni ili video promet) kako bi osigurali bolju kvalitetu usluge za korisnike.

Rješavanje smetnji: Usmjernici mogu prepoznati i rješavati probleme u mreži, kao što su petlje (routing loops) ili preopterećenja, osiguravajući stabilan i pouzdan prijenos podataka.

IZVOĐENJE VJEŽBE

Temeljna topologija

1.Pridružite adrese uređajima tako da stvorite dvije nezavisne mreže oko preklopnika 0 i preklopnika 1. Ispišite zadane adrese pregledno u tablici (za računala i usmjernike).

Uređaj	Sučelje	IP adresa	Mrežna maska
PC1	FastEthernet0	192.168.1.1	255.255.255.0
PC2	FastEthernet0	192.168.1.2	255.255.255.0
PC3	FastEthernet0	192.168.2.1	255.255.255.0
PC4	FastEthernet0	192.168.2.2	255.255.255.0
Usmjerenik1	FastEthernet0	192.168.1.254	255.255.255.0
Usmjerenik2	FastEthernet0	192.168.2.254	255.255.255.0

2. Usmjernik spojite na mreže tako da svaka mreža bude na drugom sučelju (koristi drugu

adresu). Sve adrese trebaju biti u klasi C.

Ako želite spojiti dvije nezavisne mreže na različita sučelja usmjerivača, koristeći klase C IP adresa, možete konfigurirati usmjerivač s dvije različite adrese unutar klase C raspona (192.168.0.0 do 192.168.255.255). Evo pregledne tablice s adresama:

Uređaj Sučelje IP adresa Mrežna maska

PC1	FastEthernet0/0	192.168.1.1	255.255.255.0
PC2	FastEthernet0/0	192.168.1.2	255.255.255.0
PC3	FastEthernet0/1	192.168.2.1	255.255.255.0
PC4	FastEthernet0/1	192.168.2.2	255.255.255.0
Usmjerenik1	FastEthernet0/0	192.168.1.254	255.255.255.0
Usmjerenik1	FastEthernet0/1	192.168.2.254	255.255.255.0

U ovom scenariju, PC1 i PC2 povezani su s sučeljem FastEthernet0/0 usmjerivača, a PC3 i PC4 su povezani s sučeljem FastEthernet0/1. Svako sučelje na usmjerivaču ima svoju jedinstvenu IP adresu unutar odgovarajuće mreže. Ove adrese pripadaju klasi C (privatni raspon) i omogućuju komunikaciju unutar tih mreža.

3. Ako već nije uključen, uključite u programu prikaz oznaka sučelja.

Options>Preferences>Interface>Always show port lables in logical workspace

Always Show Port Labels in Logical Workspace

4. Prema potrebi, FastEthernet sučelja dodaju se u prozoru Physical, pri čemu je prije

dodavanja sučelja potrebno isključiti I/O sklopku za napajanje uređaja.

-Isljučimo I/O sklopku za napajanje

5. U izborniku Modules može se pronaći sučelja za Ethernet mrežu. Dopunite tablicu:

Oznaka	Označava
CE	Sučelje za bakreni Ethernet kabel
CFE	Cross-over Sučelje za bakreni Ethernet kabel.
CGE	Sučelje za gigabit Ethernet mrežu
FFE	Fiber Sučelje za Ethernet mrežu
FGE	Fast Ethernet Sučelje

6. Na slici ispišite IP adrese računalnih mreža i mrežne maske. Pomoću dijaloga Palette

vizualno odvojite mreže bojama.

7. U IP Configuration sučelju računala ispravno upišite zadane pristupnike.

```
Router>ping
% Incomplete command.
Router>ping 192.168.100.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.100.1, timeout is 2 seconds:
....
Success rate is 80 percent (4/5), round-trip min/avg/max = 0/1/4 ms
Router>ping 192.168.100.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.100.3, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/3/5 ms
Router>ping 192.168.101.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.101.1, timeout is 2 seconds:
. ! ! ! !
Success rate is 80 percent (4/5), round-trip min/avg/max = 0/0/0 ms
Router>ping 192.168.101.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.101.3, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/6 ms
Router>
```

8. Ispitajte povezanost u računalnoj mreži pomoću dijagnostičkog alata ping. Koristite naredbu ping na dva načina, ovisno o tome je li izvor poruke računalo ili usmjernik (ako je usmjernik naredba se izvodi iz CLI sučelja). Zabilježite rezultat.

ping sa PC1 na PC2 -u jednoj mreži

```
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time<1ms TTL=128
Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
Reply from 192.168.1.2: bytes=32 time<1ms TTL=128
Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 2ms, Average = 1ms
```

-ping naredba šalje echo request I dobija echo reply

ping sa PC2 na PC3 -iz jedne u drugu mrežu

-ping naredba šalje echo request no ne dobija reply (timed out)

9. Proučite i po izboru isprobajte neke od ostalih naredbi dostupnih preko CLI sučelja

prema priručniku. Zabilježite naredbe koje ste isprobali.

Prikaz informacija o sučeljima: show interfaces Prikaz tablice usmjerenja: show ip route Prikaz informacija o DHCP klijentima: show ip dhcp binding Konfiguriranje vremena: clock set HH:MM:SS DD Month Year Prikaz informacija o CPU opterećenju:show processes cpu Prikaz informacija o memoriji: show memory